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Outline

Many conceptual ideas, minimal proofs and derivations

• Estimation theory
• Comparison between Bayesian and Frequentist approach
• Confidence interval

• Hypothesis testing
• Significance and power
• P-values

• Linear regression



Estimation theory
We saw two estimators for the parameter 𝑝 given 𝑛 iid samples from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝):

• MLE:
• Frequentists approach
• Inference based on likelihood
• 𝑝 is an unknown parameter, we estimate it purely based on data

• MAP:
• Bayesian approach
• 𝑝 is unknown, but it follows a prior distribution
• Inference based on posterior distribution
• we estimate it based on the observed data and our prior belief

• How do we compare different estimators? 
• Bayesian: mean squared error;

Parameter: fixed
Data: random

Parameter: random
Data: fixed



Frequentists risk
Consider 𝑛 iid samples from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) with an unknown parameter 𝑝:
• Loss: 𝐿(𝑝, 𝛿) measures how bad an estimate is

• 𝐿 𝑝, 𝛿 = 𝑝 − 𝛿 ! is known as the squared loss
• Risk of an estimator:  

• Expected loss, where expectation is taken over the distribution of data

Example

• 𝛿! 𝑋", 𝑋#, … , 𝑋$ = ∑%
&"
$

• 𝔼𝛿! 𝑋", 𝑋#, … , 𝑋$ = 𝑝,  so unbiased
• Risk under mean squared loss:  𝔼 𝑝 − 𝛿! # = 𝑉𝑎𝑟 𝛿! = ' "('

$

Consider two other estimators: 𝛿" =
")∑" &"

$
, 𝛿# =

+)∑" &"
"!)$

Let’s plot their risk functions

Compared with Bayesian MMSE: 
expectation is taken over prior!

𝛿!

𝛿"

𝛿#



Frequentists risk
Example

• 𝛿" 𝑋#, 𝑋$, … , 𝑋% = ∑&
'!
%

• 𝔼𝛿" 𝑋#, 𝑋$, … , 𝑋% = 𝑝,  so unbiased
• Risk under mean squared loss:  𝔼 𝑝 − 𝛿" $ = 𝑉𝑎𝑟 𝛿" = ( #)(

%
Consider two other estimators: 𝛿# =

#*∑! '!
%

, 𝛿$ =
,*∑! '!
#"*%

𝛿# may look stupid. But 𝛿" vs 𝛿$ is trickier…

Rules for choosing THE BEST one:
• Average risk: choose a prior over 𝑝	 →	 Bayesian!
• Worst-case risk: minimax estimator
• Only consider unbiased estimator: (see next)

Compared with Bayesian MMSE: 
expectation is taken over prior!

𝛿!

𝛿"

𝛿#



Sufficient statistics

Suppose 𝑋", … , 𝑋#	~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 :
Consider 𝑇 𝑋 ≔ 𝑋" +⋯+ 𝑋#	~	𝐵𝑖𝑛(𝑛, 𝑝)
𝑋", … , 𝑋# 	→ 	 𝑇(𝑋) can throw away information
To estimate 𝑝 however, 𝑇(𝑋) is just as informative as 𝑋", … , 𝑋#	

Definition. 𝑇(𝑋) is a sufficient statistic for a parameter 𝑝, if the distribution 
of 𝑋 does not depend on 𝑝 given 𝑇

Sufficient statistics are the only information needed to build an estimator
 

Pr 𝑋 = 𝑥 𝑇 = 𝑡 =
Pr 𝑋 = 𝑥, 𝑇 = 𝑡

Pr 𝑇 = 𝑡

Parameter Sufficient statistics Samples



Minimal sufficiency
There are many sufficient statistics for our toy model:

• 𝑋!, … , 𝑋$
• 𝑋% ! , … , 𝑋% $

• 𝑋! +⋯+ 𝑋$

Definition. 𝑇(𝑋) is a minimal sufficient statistic for a parameter 𝑝, if 𝑇 is sufficient, and any other sufficient statistic 

𝑆(𝑋), 𝑇 𝑋 = 𝑓(𝑆 𝑋 ) for some 𝑓

Intuitively, minimal sufficient statistics are the most efficient statistics capturing all the information about the 
parameter

Roughly speaking, if 𝑇	determines the likelihood ratio in a “one-to-one fashion”, then 𝑇 is minimal sufficient.
See also: Fisher’s factorization theorem.



Sufficiency principle: Rao-Blackwellization

Let 𝑇(𝑋) be a sufficient statistic, and 𝛿7 𝑋  an estimator.
Consider a new estimator 𝛿8 𝑇(𝑋) ≔ 𝔼 𝛿7 𝑋 	 𝑇(𝑋)]

For convex losses, the Rao–Blackwell estimator 𝛿8 is at least as good as 𝛿7

In practice, can lead to enormous difference.

See Textbook [BT] page 426 Exercises for examples



Minimum variance unbiased estimator (optional)

Lehmann–Scheffé theorem roughly says that any unbiased estimator 
through a complete and sufficient statistic, is the unique minimum 
variance unbiased estimator.

See also: Cramér–Rao bound, which gives a bound on how efficient an 
unbiased estimator can be.

Complete statistic
Roughly, 𝑇 is complete if there is no non-trivial estimate of 0 through 𝑇
different estimates of  𝑇 lead to different distributions



Caution about unbiasedness  (optional topic)

Not always a good idea to insist unbiasedness, because Cramér–Rao 
bound may not be achievable

Example:
Data samples 𝑋~𝐵𝑖𝑛(1000, 𝑝), want to estimate Pr[𝑋 ≥ 500].
One can show that the minimum variance unbiased estimator is just 
𝕀 𝑋 ≥ 500
• This means that if 𝑋 = 500, our estimate is 1
• if 𝑋 = 499, our estimate is 0



Confidence interval
How do you interpret the results of an estimation?
• By LLN/CLT, any (asymptotically) unbiased estimator converges to the true parameter as the sample size tends 

to infinity
• By Chernoff-Hoeffding bound, we also get a finite size bound

Suppose 𝑋!, … , 𝑋$~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝  are iid r.v. , and 𝑆$ = ∑& 𝑋&  then for any 𝑡 > 0

Pr 𝑆$ − 𝑛𝑝 ≥ 𝑡 ≤ 2e'
#(!
)

Setting 𝛼 = 2e'
!"!
# , we have 𝑡 = $	 +) #/-

#
.

This means that with probability 1 − 𝛼,

𝑝 ∈
𝑆$
𝑛 −

ln 2
𝛼

2𝑛 ,
𝑆$
𝑛 +

ln 2/𝛼
2𝑛 .

It is important to note that this probability is over the distribution of 𝑺𝒏



Confidence interval: interpretations

A 95% confidence interval is NOT an interval that contains the true parameter with 
probability at least 95%

The confidence interval is a function of the data
After observing the data, the confidence interval is a fixed interval
It either contains the true parameter, or not

To bring back probabilistic interpretation:
• Consider repeating the experiments, over and over again

• Now you have new, fresh, random data, so that the confidence interval can be treated as a 
random object over future repeated experiments

• In particle physics, usually a five-sigma rule, unless ground-breaking discovery
• Bayesian approach: credible region

• Only way to conclude from what we have already observed

https://arxiv.org/pdf/1310.1284.pdf


Recall Probability vs. Statistics

In probability: 
Previous studies found the treatment is 80% effective. Then we expect that for 
a study of 100 patients, on average 80 will be cured. And the probability that at 
least 65 will be cured is at least 99.99%.

In statistics:
Observe that 78/100 patients were cured. We will be able to conclude that: if 
we repeat this experiment, then we are 95% confident that the number of 
cured patients are between 69 to 87.

Compute probabilities from a parametric model with known parameters

Estimate the probability of parameters given a parametric model and collected data from it



Bayesian vs. frequentist

Bayesian
• Inference based on posterior
• A feature or a bug: Prior
• Probabilities can be interpreted
• Prior is made explicit
• Prior can be subjective
• No canonical prior: can change under re-

parameterization
• Hierarchical Bayesian, graphical model
• Computation/sampling of posterior can 

be hard
• Frontiers of many research

Frequentist
• Inference based on likelihood
• No prior
• Objective – everyone gets the same 

answer
• Often gets mis-interpreted
• Needs to completely specify an 

experiment AND the data analysis, before 
collecting data and actually doing the 
analysis

• No adaptive re-use of the same dataset
• There is an entire field for systematically 

coping with adaptive data analysis

https://adaptivedataanalysis.com/


Hypothesis testing

Given data 𝑋, which of the two (sub)-models generated 𝑋 ?
Models 𝑃9: 𝜃 ∈ Θ
• Null hypothesis: 𝐻7 ≔ 𝜃 ∈ Θ7
• Alternative hypothesis: 𝐻8 ≔ 𝜃 ∈ Θ8

𝐻7 is the default/fallback choice
• Fail to reject 𝐻7, no definite conclusion
• Reject 𝐻7 (conclude that 𝐻7 is false, 𝐻8 is true) 

If 𝑋 is a test statistic, the rejection region is the set of values to reject 
𝐻7 in favor of 𝐻8 if 𝑋 belongs to it.

𝑓(𝑋;𝐻") 𝑓(𝑋;𝐻!)

Non-reject 𝐻" Reject 𝐻"



Hypothesis testing

Example: 𝑋", … , 𝑋#	~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃
Test statistic: the number of heads 𝑆# = ∑$𝑋$
• Null hypothesis: fair coin 𝐻% ≔ 𝜃 = 0.5
• Alternative hypothesis: biased coin 𝐻" ≔ 𝜃 ≠ 0.5
Ideally, would like to choose critical value 𝜉, so that we reject 𝐻% whenever  
𝑆# − 0.5𝑛 > 𝜉

 

𝑓(𝑋;𝐻") 𝑓(𝑋;𝐻!)

Non-reject 𝐻" Reject 𝐻"



Type I, Type II errors

True answer

We  report

𝐻! 𝐻"

Reject 𝐻! Type I error Correct

Don’t reject 𝐻! Correct Type II error



Significance and power

• Significance level = Pr type	I	error = Pr false	positive
   = probability of incorrectly rejecting 𝐻7 

• Power = probability of correctly rejecting 𝐻7 
    = 1 − Pr type	II	error

Ideally, want significance level near 0 and power near 1



P-values

Instead of choosing significance level and power, one often simply 
reports a single 𝑝-value

Say 𝑥 is a test statistic
• Right sided 𝑝-value: Pr 𝑋 > 𝑥;𝐻7
• Two sided: Pr 𝑋 > 𝑥;𝐻7

Interpretations: If we were to reject 𝐻7 exactly starting at the observed 
𝑥, what is the probability of incorrectly rejecting 𝐻7

Pr 𝑥;	𝐻"    vs   Pr 𝑥|𝐻"

“P-hacking”



Likelihood ratio test

Another common test is the likelihood ratio test

• 𝐿 𝑥 ≔ :; <;	?'
:; <;	?(

• If 𝐿 𝑥 > 𝜉, then reject	𝐻7

See also: Neyman-Pearson Lemma, which roughly says that there exists 
a likelihood ratio test that achieves the best critical region among all 
the reasonable tests.
*One way to prove this lemma is to use the Lagrange multiplier method



Linear regression

Why least squares make sense in linear regression

• Assume independent Gaussian noise are added to the data

𝑦$ = 𝛽% + 𝛽"𝑥$ +𝑁(0,1)

• Given data 𝑥$ , 𝑦$ $&"
#

• Want to find MLE estimate for 𝛽%, 𝛽"

This gives precisely the formula of minimizing ∑$ 𝑦$ − 𝛽% − 𝛽"𝑥$ '


