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Outline

Many conceptual ideas, minimal proofs and derivations

e Estimation theory
 Comparison between Bayesian and Frequentist approach
* Confidence interval

* Hypothesis testing
* Significance and power
* P-values

* Linear regression



Estimation theory

We saw two estimators for the parameter p given n iid samples from Bernoulli(p):

* MLE:
* Frequentists approach
* Inference based on likelihood
* pisan unknown parameter, we estimate it purely based on data

Parameter: fixed
Data: random

* MAP:

5 uninown,but

* pisunknown, but it follows a prior distribution Data: fixed

* Inference based on posterior distribution
* we estimate it based on the observed data and our prior belief

* How do we compare different estimators?
e Bayesian: mean squared error;



Frequentists risk

Consider n iid samples from Bernoulli(p) with an unknown parameter p:

* Loss: L(p,6) measures how bad an estimate is
« L(p,8) = (p — 8)?is known as the squared loss

* Risk of an estimator:
* Expected loss, where expectation is taken over the distribution of data

Example

X
o 50(X1,X2, ,Xn) = Zl;
* Eby(Xq1,X5, ..., X;;) = p, sounbiased

* Risk under mean squared loss: E(p — 8,)% = Var(6,) = p(ln‘p)
Consider two other estimators: §; = 1+ZiXi, 5y = S+ Xi
n 10+n

Let’s plot their risk functions

Compared with Bayesian MMSE:
expectation is taken over prior!




Frequentists risk

Example

X
¢ 60(X1,X2, ...,Xn) = le
e E§y(Xq, X5, ..., X)) = p, so unbiased

* Risk under mean squared loss: E(p — 50)2 = Var(8,) = p(ln—P)
' i | 2 5+ Xi
Consider two other estimators: §; = 142 X; S5, = T2 X
n 10+n

01 may look stupid. But 6y vs 95 is trickier...

Rules for choosing THE BEST one:

* Average risk: choose a prior over p — Bayesian!
* Worst-case risk: minimax estimator

* Only consider unbiased estimator: (see next)

Compared with Bayesian MMSE:
expectation is taken over prior!




Sufficient statistics

Suppose X4, ..., X,, ~Bernoulli(p):
Consider T(X) == X; + -+ X,, ~ Bin(n,p)
X4, ..., X, = T(X) canthrow away information

To estimate p however, T (X) is just as informative as X, ..., X,

Definition. T'(X) is a sufficient statistic for a parameter p, if the distribution
of X does not depend on p given T

Sufficient statistics are the only information needed to build an estimator

CEEEEY ufficient statistics B



Minimal sufficiency

There are many sufficient statistics for our toy model:

Definition. T (X) is a minimal sufficient statistic for a parameter p, if T is sufficient, and any other sufficient statistic

S(X), T(X) = f(S(X)) for some f

Intuitively, minimal sufficient statistics are the most efficient statistics capturing all the information about the
parameter

Roughly speaking, if T determines the likelihood ratio in a “one-to-one fashion”, then T is minimal sufficient.
See also: Fisher’s factorization theorem.



Sufficiency principle: Rao-Blackwellization

Let T'(X) be a sufficient statistic, and §,(X) an estimator.
Consider a new estimator 6, (T'(X)) = E[6,(X) | T(X)]

For convex losses, the Rao—Blackwell estimator 0; is at least as good as 9§,
In practice, can lead to enormous difference.

See Textbook [BT] page 426 Exercises for examples



Minimum variance unbiased estimator (optional)

Lehmann-Scheffé theorem roughly says that any unbiased estimator
through a complete and sufficient statistic, is the unique minimum
variance unbiased estimator.

Complete statistic

Roughly, T is complete if there is no non-trivial estimate of 0 through T
different estimates of T lead to different distributions

See also: Cramér—Rao bound, which gives a bound on how efficient an
unbiased estimator can be.



Caution about unbiasedness (optional topic)

Not always a good idea to insist unbiasedness, because Cramér—Rao
bound may not be achievable

Example:
Data samples X~Bin(1000, p), want to estimate Pr|[X = 500].

One can show that the minimum variance unbiased estimator is just
I[X = 500]

* This means that if X = 500, our estimate is 1
e if X = 499, our estimate is O



Confidence interval

How do you interpret the results of an estimation?

* By LLN/CLT, any (asymptotically) unbiased estimator converges to the true parameter as the sample size tends
to infinity
* By Chernoff-Hoeffding bound, we also get a finite size bound

Suppose X3, ..., X,~Bernoulli(p) areiid rv., and S,, = );; X; then forany t > 0

2t
Pr[|S,, —np|=t] <2e n

2t2
Settinga = 2e n,wehavet = /%

This means that with probability 1 — «,

l 2
. & B n (a) Sn N In(2/a)
p n 2n ' n 2n

It is important to note that this probability is over the distribution of S,



Confidence interval: interpretations

A 95% confidence interval is NOT an interval that contains the true parameter with
probability at least 95%

The confidence interval is a function of the data

After observing the data, the confidence interval is a fixed interval
It either contains the true parameter, or not

To bring back probabilistic interpretation:

* Consider repeating the experiments, over and over again

* Now you have new, fresh, random data, so that the confidence interval can be treated as a
random object over future repeated experiments

* |n particle physics, usually a five-sigma rule, unless ground-breaking discovery

e Bayesian approach: credible region
* Only way to conclude from what we have already observed



https://arxiv.org/pdf/1310.1284.pdf

Recall Probability vs. Statistics
In probability:

Previous studies found the treatment is 80% effective. Then we expect that for
a study of 100 patients, on average 80 will be cured. And the probability that at
least 65 will be cured is at least 99.99%.

Estimate the probability of parameters given a parametric model and collected data from it

In statistics:

Observe that 78/100 patients were cured. We will be able to conclude that: if
we repeat this experiment, then we are 95% confident that the number of
cured patients are between 69 to 87.




Bayesian vs. frequentist

Bayesian

Inference based on posterior

A feature or a bug: Prior
Probabilities can be interpreted
Prior is made explicit

Prior can be subjective

No canonical prior: can change under re-
parameterization

Hierarchical Bayesian, graphical model

Computation/sampling of posterior can
be hard

* Frontiers of many research

Frequentist

Inference based on likelihood
No prior

Objective — everyone gets the same
answer

Often gets mis-interpreted

Needs to completely specify an
experiment AND the data analysis, before
collecting data and actually doing the
analysis

No adaptive re-use of the same dataset

* There is an entire field for systematically
coping with adaptive data analysis



https://adaptivedataanalysis.com/

Hypothesis testing

Given data X, which of the two (sub)-models generated X ?

Models Pg: 0 € O

* Null hypothesis: H, := {0 € 0,}

* Alternative hypothesis: H; := {0 € 0} f(X; Ho) J(X; Hy)

H, is the default/fallback choice |
* Fail to reject Hy, no definite conclusion

* Reject H, (conclude that H,, is false, H; is true) Non-reject H, Reject H,

If X is a test statistic, the rejection region is the set of values to reject
H, in favor of H; if X belongs to it.




Hypothesis testing

Example: X3, ..., X;, ~Bernoulli(6)

Test statistic: the number of heads S,, = ),; X;

* Null hypothesis: fair coin Hy := {6 = 0.5}

* Alternative hypothesis: biased coin H; := {6 # 0.5}

Ideally, would like to choose critical value £, so that we reject Hy whenever
|S,, —0.5n| > ¢

f(X; Hp) f(X; Hy)

\

Non-reject H, Reject H,,




Type |, Type Il errors

True answer

Hyg Hy

We report Reject H, Type | error Correct

Don’t reject H, Correct Type |l error



Significance and power

* Significance level = Pr|type I error| = Pr[false positive]
= probability of incorrectly rejecting H,,

* Power = probability of correctly rejecting H,
=1 — Pr|type Il error]

|deally, want significance level near O and power near 1



“P-hacking”

P-values

Instead of choosing significance level and power, one often simply
reports a single p-value

Say x is a test statistic
* Right sided p-value: Pr|X > x; H,] Prlx; Ho] vs Prlx|H,]
* Two sided: Pr[|X| > x; H, ]

Interpretations: If we were to reject H, exactly starting at the observed
x, what is the probability of incorrectly rejecting H



Likelihood ratio test

Another common test is the likelihood ratio test

. ___ Pr[x; Hq]
L(x) o Pr(x; Hp]

* If L(x) > &, then reject H,

See also: Neyman-Pearson Lemma, which roughly says that there exists
a likelihood ratio test that achieves the best critical region among all
the reasonable tests.

*One way to prove this lemma is to use the Lagrange multiplier method




Linear regression

Why least squares make sense in linear regression

* Assume independent Gaussian noise are added to the data
Vi = Bo + p1x; + N(0,1)

* Given data {(x;, y;) -4
* Want to find MLE estimate for (8, 51)

This gives precisely the formula of minimizing Y;(y; — By — B1X;)?



