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Recap

What next? 
Electrical networks

• Hitting, commute & cover time of random walks

Markov chain Monte Carlo method

• Coupling

• Path coupling

Rapid mixing & random walks on expanders

• Expander graphs

• Expander mixing lemma

Previous lecture:
Electrical networks

• Electrical flows

• Effective resistance

• Laplacian system

• Thompson’s principle



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺

Proof:

Fix any node 𝑡, let ℎ𝑢,𝑡 be the hitting time from node 𝑢 to node 𝑡, then ∀𝑢 ≠ 𝑡

ℎ𝑢,𝑡 = 1+
1

𝑑𝑢
෍

𝑣∼𝑢

ℎ𝑣,𝑡 ⇒ 𝑑𝑢ℎ𝑢,𝑡 −෍

𝑣∼𝑢

ℎ𝑣,𝑡 = 𝑑𝑢

Consider the vector ℎ∗,𝑡 , it satisfies:

𝐷 − 𝐴 ℎ𝑢,𝑡

ℎ𝑡,𝑡

=
𝑑𝑢

𝑑𝑡 − 2𝑚

Note that we have artificially added one row of equation on ℎ𝑡,𝑡

To ensure there is a solution, we have to make sure that the right hand side sum up to 0

(To be cont’d..)



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺

Proof (cont’d):

Fix any node 𝑠, let ℎ𝑢,𝑠 be the hitting time from node 𝑢 to node 𝑠, then ∀𝑢 ≠ 𝑠

ℎ𝑢,𝑠 = 1 +
1

𝑑𝑢
෍

𝑣∼𝑢

ℎ𝑣,𝑠 ⇒ 𝑑𝑢ℎ𝑢,𝑠 −෍

𝑣∼𝑢

ℎ𝑣,𝑠 = 𝑑𝑢

Consider the vector ℎ∗,𝑠 , it satisfies:

𝐷 − 𝐴

ℎ𝑠,𝑠
ℎ𝑢,𝑠

ℎ𝑡,𝑠

=

𝑑𝑠 − 2𝑚
𝑑𝑢

𝑑𝑡

Again, we have artificially added one row of equation on ℎ𝑠,𝑠

(To be cont’d..)



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶𝑠,𝑡 = 2𝑚𝑅eff 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺

Proof (cont’d):

𝐿 ℎ∗,𝑡 − ℎ∗,𝑠 =

𝑑𝑠
𝑑𝑢
⋮

𝑑𝑡 − 2𝑚

−

𝑑𝑠 − 2𝑚
𝑑𝑢
⋮
𝑑𝑡

=

2𝑚
0
⋮

−2𝑚

Thus,
𝐿 ℎ∗,𝑡−ℎ∗,𝑠

2𝑚
= 𝑏𝑠,𝑡

Recall that 𝐿𝜙 = 𝑏𝑠𝑡 has a solution that is unique up to translation

Let 𝜙 =
ℎ∗,𝑡−ℎ∗,𝑠

2𝑚
, we have

𝑅eff 𝑠, 𝑡 = 𝜙 𝑠 − 𝜙 𝑡 =
ℎ𝑠,𝑡 − ℎ𝑠,𝑠

2𝑚
−
ℎ𝑡,𝑡 − ℎ𝑡,𝑠

2𝑚
=
ℎ𝑠,𝑡 + ℎ𝑡,𝑠

2𝑚
=
𝐶𝑠,𝑡
2𝑚



Cover Time

Corollary. 𝐶𝑢,𝑣 ≤ 2𝑚 for every edge 𝑢𝑣 ∈ 𝐸.

Proof: Notice that 𝑅eff 𝑢, 𝑣 ≤ 1 for every edge 𝑢𝑣 ∈ 𝐸. Then it follows from 𝐶𝑢,𝑣 = 2𝑚𝑅eff 𝑢, 𝑣 ≤ 2𝑚

Theorem.  The cover time of a connected graph is at most 2𝑚(𝑛 − 1).

Proof: Consider any spanning tree 𝑇. 

Then the cover time is at most the time to commute along each tree edges of 𝑇.



Approximating Cover Time by Resistance 
Diameter

Theorem.  Let 𝑅 𝐺 ≔ max
𝑢,𝑣

𝑅eff 𝑢, 𝑣 be the resistance diameter. Then, 

𝑚 ⋅ 𝑅 𝐺 ≤ cover 𝐺 ≤ 6𝑒𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 + 𝑛

Proof: Firstly, 

cover 𝐺 ≥ max ℎ𝑢𝑣, ℎ𝑣𝑢 ≥
𝐶𝑢𝑣
2

= 𝑚𝑅𝑢𝑣

For the upperbound, notice that the maximum (expected) commute time from any vertex is at most 2𝑚𝑅 𝐺

If the random walk is run for 2𝑒𝑚 ⋅ 𝑅 𝐺 , by Markov’s inequality, the probability that a vertex is not visited is at 
most 1/𝑒

If we repeat this 3 ln 𝑛 times, the probability that a vertex is not visited is at most 1/𝑛3

By a union bound, the probability that there exists a vertex not visited is at most 1/𝑛2

In such cases, we can pay for another pessimistic cover time of 𝑛3

Combined, we have cover 𝐺 ≤ 6𝑒𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 +
1

𝑛2
𝑛3

Ding, Lee and Peres showed a constant factor approximation of cover time,
based on an effective resistance embedding of discrete Gaussian free field

https://annals.math.princeton.edu/wp-content/uploads/annals-v175-n3-p08-p.pdf


Graph Connectivity

Theorem. There is an 𝑂 𝑛3 time algorithm to solve 𝑠-𝑡 connectivity using only 𝑂(log 𝑛) space

Using random walk, the space requirement is 𝑂(log 𝑛) and expected running time is 𝑂 𝑉 𝐸 = 𝑂 𝑛3

You may wonder, is randomness necessary for checking graph connectivity in log-space? 

Definition. A sequence 𝜎 is (𝑑, 𝑛)-universal if for every labeled connected 𝑑-regular graphs and every starting 
vertex 𝑠, the walk defined by 𝜎 started from 𝑠 covers every vertices

Theorem. There exists (𝑑, 𝑛)-universal sequence of length 𝑂 𝑛3𝑑2 log 𝑛𝑑 for undirected graphs

HINT: Cover time is at most 𝑂(𝑛2𝑑) for 𝑑-regular graphs

Reingold’s Theorem For undirected graphs, one can explicitly construct such a universal sequence in log-space 

It is an open problem to derandomize log-space connectivity
Though likely not through “directed” universal sequences

https://dl.acm.org/doi/10.1145/1391289.1391291


Algorithms from random walk (so far)

Finding certain objects faster
• Hitting time / return time

• Ex: Finding bipartite matching, algorithmic Lovász local lemma, 2-SAT, random 3-SAT…

Exploring graphs in space bounded computations
• Cover time

• Ex: checking undirected s-t connectivity, cat and mouse game

• Time-space trade-off

Rapid mixing of random walks: Markov chain Monte Carlo method
• Mixing time

• Ex: Card shuffling, sampling random combinatorial objects, approximate counting

• Exponentially large graph, yet mixes in polynomial time ≈ 𝑂(log𝑁) where 𝑁 is the size of the graph

https://www2.eecs.berkeley.edu/Pubs/TechRpts/1979/ERL-m-79-54.pdf


Recap: Mixing Time

From the fundamental theorem of Markov chain, we know that 𝑝𝑡 → 𝜋 as 𝑡 → ∞ regardless of 𝑝0

We would like to understand how fast it converges to𝜋

Recall how we measure closeness: 𝑑𝑇𝑉 𝑝𝑡 , 𝜋 =
1

2
𝑝𝑡 − 𝜋 1 =

1

2
σ𝑖=1
𝑛 𝑝𝑡 𝑖 − 𝜋 𝑖

Definition.  The 𝝐-mixing time of the random walk is defined as the smallest 𝑡 such that

𝑝𝑡 − 𝜋 1 ≤ 𝜖 ∀ 𝑝0.

An observation: For any distributions 𝑝 and 𝑞 over [𝑛], let 𝑝 𝑆 = σ𝑖∈𝑆 𝑝(𝑖) , 𝑞 𝑆 = σ𝑖∈𝑆 𝑞(𝑖), then

𝑑𝑇𝑉 𝑝, 𝑞 =
1

2
෍

𝑖=1

𝑛

𝑝 𝑖 − 𝑞 𝑖 = max
𝑆⊆ 𝑛

𝑝 𝑆 − 𝑞(𝑆)

Theorem.  For any finite, irreducible, aperiodic Markov 

chain, there is a unique 𝜋, and 𝑝𝑡 → 𝜋 as 𝑡 → ∞.



Recap: Graph coloring

Given an undirected graph with max. degree Δ and 𝑘 colors

Goal: generate a 𝑘-coloring uniformly at random

This is presumably harder than deciding if there is a 𝑘-coloring 

Nevertheless, the following random walk has a stationary distribution uniform over all 𝑘-colorings:

• Start with any 𝑘-coloring 𝜎

• Pick a vertex 𝑣 and a color 𝑐 uniformly at random, recolor 𝑣 with 𝑐 if it is legal; otherwise do nothing;

This Markov chain is irreducible provided that 𝑘 ≥ Δ + 2, and aperiodic 

We prove rapid mixing assuming 𝑘 ≥ 4Δ + 1, based on a coupling argument, and explain ideas for 𝑘 ≥ 2Δ + 1

State of the art: 𝑘 ≥ (
11

6
− 𝜖)Δ for a small 𝜖, or 𝑘 ≥ Δ + 3 for sufficiently large girth graphs

This is known as the Metropolis chain
Other chains: Glauber dynamics, Wang–Swendsen–Kotecký chain, …



Coupling of two distributions

Given distributions 𝑝 and 𝑞 over [𝑛], a coupling between them is a joint distribution 𝜇 over 𝑛 × [𝑛] such that 
the marginals are 𝑝 and 𝑞, respectively:

෍

𝑗∈[𝑛]

𝜇(𝑖, 𝑗) = 𝑝(𝑖)

෍

𝑖∈[𝑛]

𝜇(𝑖, 𝑗) = 𝑞(𝑗)

Independently joining 𝑝 and 𝑞 is obviously a coupling. More interesting are when they are not independent.

Theorem

For any distributions 𝑝 and 𝑞, and any coupling 𝜇 between them, 𝑑𝑇𝑉 𝑝, 𝑞 ≤ Pr
𝑋,𝑌 ∼𝜇

[𝑋 ≠ 𝑌]

Furthermore, there is a coupling 𝜇 such that 𝑑𝑇𝑉 𝑝, 𝑞 = Pr
𝑋,𝑌 ∼𝜇

[𝑋 ≠ 𝑌]

Intuitively, the best we can do is to make the random variables equal in the overlapping regions, that is, 
min{𝑝𝑖 , 𝑞𝑖}; then with the remaining probability, they must be unequal.

Note that the region in red, and the region in light blue have the same area.



Coupling vs Indistinguishing game

TV distance is also known as statistical distance

• A game to distinguish two distributions 𝑝 and 𝑞 over [𝑛]

• Player A draw a sample 𝑋 ∼ 𝑝 and a sample 𝑌 ∼ 𝑞

• Player A flips a fair coin to decide which sample to send to Player B

• Player B now needs to guess which distribution does it came from

𝑋 ∼ 𝑝

𝑌 ∼ 𝑞

Seeing 𝑖, guess 𝑝 if 
𝑝𝑖 > 𝑞𝑖; otherwise 

guess 𝑞

Maximum likelihood!
Chance of error = TV distance!



Coupling of two random walks

Let 𝑋𝑡 and 𝑌𝑡 be two copies of a Markov chain over [𝑛]. A coupling between them is a joint process 𝑋𝑡, 𝑌𝑡
over 𝑛 × [𝑛] such that

1. Marginally, viewed in isolation, 𝑋𝑡 and 𝑌𝑡 are both copies of the original chain

2. 𝑋𝑡 = 𝑌𝑡 ⇒ 𝑋𝑡+1 = 𝑌𝑡+1

Basically, one can think of two random walkers on the same graph 𝐺

In isolation, they each behave faithfully as a random walk on 𝐺

But their moves could be dependent

The coupling technique is to design a joint moving process, such that

• The two random walkers meet quickly

• Once they meet, they make identical moves thereafter

Then by the coupling theorem, we know that the time they meet will roughly be an upperbound of mixing time



Random walk on the hypercube

• Start with 𝜎 ∈ 0,1 𝑛

• Pick a coordinate 𝑖 ∈ [𝑛] u.a.r., and 𝑏 ∈ 0, 1 u.a.r.

• Update 𝜎𝑖 = 𝑏

To analyze its mixing time, we consider the following coupling

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡 and 𝑌𝑡
At each step, we let them choose the same coordinate 𝑖 and same 𝑏

Then, the time that they perfectly couple together is exactly the coupon collecting time!

Note that the probability of not collecting the 𝑖-th coupon after 𝑟 rounds is at most 1 −
1

𝑛

𝑟

By a union bound, the probability of not collecting all the coupons after 𝑛 ln
𝑛

𝜖
rounds is at most 𝜖

So, the 𝜖-mixing time for a random walk on the hypercube is  𝑛 ln
𝑛

𝜖



Coupling for Graph Coloring

• Start with any 𝑘-coloring 𝜎
• Pick a vertex 𝑣 and a color 𝑐 uniformly at random, recolor 𝑣 with 𝑐 if it is 

legal; otherwise do nothing

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡 and 𝑌𝑡
At each step, we let them choose the same vertex 𝑣 and same color 𝑐
Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡
Unlike the previous example, 𝑑𝑡 can increase now
We need to consider Good Moves that decrease 𝑑𝑡, and balance them with 
Bad Moves that increase 𝑑𝑡



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡 and 𝑌𝑡
At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Good Moves that decrease 𝑑𝑡:

If we chose a disagreeing vertex 𝑣, and color 𝑐 does not appear in the neighborhood of 𝑣 in 𝑋𝑡 or 𝑌𝑡, 
this is a good move

Because we can safely recolor a disagreeing vertex 𝑣 with color 𝑐, and they agree from then on

Let 𝑔𝑡 be the number of good moves (among all possible 𝑘𝑛 choices)

There are 𝑑𝑡 vertices to choose from, and each disagreeing vertex has a neighborhood of at most Δ
colors in either process, so each disagreeing vertex has 𝑘 − 2Δ “safe colors”

𝑔𝑡 ≥ 𝑑𝑡(𝑘 − 2Δ)

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡 and 𝑌𝑡
At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Bad Moves that increase 𝑑𝑡:  a legal move in one process but not the other

This happens when (and only when) the chosen color 𝑐 is already the color of some 
neighbor of 𝑣 in one process but not the other

In other words, 𝑣 must be a neighbor of some disagreeing vertex 𝑢, and 𝑐 must be the 
color of 𝑢 in either 𝑋𝑡 or 𝑌𝑡

Let 𝑏𝑡 be the number of bad moves (among all possible 𝑘𝑛 choices)

There are 𝑑𝑡 choices of disagreeing vertex 𝑢, then Δ choices for 𝑣, then 2 choices for 
𝑏𝑡 ≤ 2Δ𝑑𝑡

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



Coupling for Graph Coloring

Say we have two arbitrary copies of the Markov chain, 𝑋𝑡 and 𝑌𝑡
At each step, we let them choose the same vertex 𝑣 and same color 𝑐

Let 𝑑𝑡 = number of vertices 𝑋𝑡 disagree with 𝑌𝑡

Combined: 𝔼 𝑑𝑡+1 𝑑𝑡 = 𝑑𝑡 +
𝑏𝑡−𝑔𝑡

𝑘𝑛
≤ 𝑑𝑡 + 𝑑𝑡

4Δ−𝑘

𝑘𝑛
≤ 𝑑𝑡 1 −

1

𝑘𝑛

Since 𝑑0 ≤ 𝑛, we have 𝔼 𝑑𝑡 𝑑0 ≤ 1/𝑒 for 𝑡 = 2𝑘 𝑛 ln 𝑛. Thus,
Pr 𝑑𝑡 > 0 𝑋0, 𝑌0 = Pr 𝑑𝑡 ≥ 1 𝑋0, 𝑌0 ≤ 𝔼 𝑑𝑡 𝑑0 ≤ 1/𝑒

This concludes that the 𝜖-mixing time is O 𝑛𝑘 log
𝑛

𝜖

To improve this to 𝑘 ≥ 2Δ + 1, one tries to pair bad moves in 𝑋𝑡 but blocked in 𝑌𝑡 , 
with bad moves in 𝑌𝑡 but blocked in 𝑋𝑡

Start with any 𝑘-coloring 𝜎
Pick a vertex 𝑣 and a color 𝑐 u.a.r., 
recolor 𝑣 with 𝑐 if legal



Expander Graphs

• Combinatorial: graphs with good expansion

• Probabilistic: graphs in which random walks mix rapidly

• Algebraic: graphs with large spectral gap

Let G be a d-regular graph, and let 𝑑 = 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑛 ≥ −𝑑 be the spectrum of its adjacency 
matrix. 

We will be interested in the spectral radius, given by 
𝛼 ≔ max{𝛼2, |𝛼𝑛|}

If 𝛼 is much smaller than 𝑑, we have good spectral expansion.

There are many nice properties associated with expander graphs

Among others, say if we want more than one samples in MCMC, do we have to resample entirely?



Expander Mixing lemma

Intuitively, an expander can be seen as an approximation to the complete graph, because edges are distributed evenly

Induced edges: 𝐸 𝑆, 𝑇 ≔ { 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇, 𝑢𝑣 ∈ 𝐸}

We also allow non-disjoint 𝑆, 𝑇, in which case an edge can be counted twice.

Expander Mixing lemma

Let G be a d-regular graph with n vertices. If the spectral radius of G is 𝛼, then for every 𝑆 ⊆ 𝑛 , 𝑇 ⊆ [𝑛], we have 

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑆 𝑇 .

Proof: Note that 𝐸 𝑆, 𝑇 = 𝜒𝑆
𝑇𝐴𝜒𝑇. Let 𝜒𝑆 = σ𝑖 𝑎𝑖𝑣𝑖 , 𝜒𝑇 = σ𝑖 𝑏𝑖𝑣𝑖 , where {𝑣𝑖} is an orthonormal basis for 𝐴, with eigenvalues {𝛼𝑖}.

𝐸 𝑆, 𝑇 =
𝑑 𝑆 𝑇

𝑛
+෍

𝑖≥2

𝛼𝑖𝑎𝑖𝑏𝑖 .

By Cauchy-Schwarz,

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑎 2 𝑏 2 = 𝛼 𝜒𝑆 2 𝜒𝑇 2 = 𝛼 𝑆 𝑇

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣



Expander Mixing lemma

Intuition: Expander mixing lemma tells us that a spectral expander 
looks like a random graph.

Homework: Let G be a d-regular graph with spectral radius 𝛼. Show 

that the size of the maximum independent set of G is at most 
𝛼𝑛

𝑑
.

Use this result to conclude that the chromatic number is at least 
𝑑

𝛼
.



Converse to Expander Mixing lemma

(By Bilu and Linial)
Suppose that for every 𝑆 ⊆ 𝑛 , 𝑇 ⊆ [𝑛] with 𝑆 ∩ 𝑇 = ∅, we have 

𝐸 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝛼 𝑆 𝑇 .

Then all but the largest eigenvalue of A in absolute value is at most 
𝑂 𝛼 1 + log

𝑑

𝑎
.

• Proof is based on LP duality
• Would be nice to see an analog of Trevisan’s Cheeger’s rounding proof



Existence of expanders

• Complete graphs are obviously the best expanders in terms of 
“expansion” (in all three notions of “expansion”)

• What’s interesting is the existence of sparse expanders: e.g. d-regular 
expanders for constant d

• A random d-regular graph is a (combinatorial) expander with high 
probability

• However, deterministic and explicit construction of expanders seems 
to be much harder to come up with



Alon-Boppana Bound

• For d-regular graphs, how small can the spectral radius be?

• Ramanujan graphs: graphs whose spectral radius are at most 
2 𝑑 − 1

Alon-Boppana Bound

Let G be a d-regular graph with n vertices, and 𝛼2 be the second largest 
eigenvalue of its adjacency matrix. Then

𝛼2 ≥ 2 𝑑 − 1 −
2 𝑑 − 1 − 1

diam G /2



Alon-Boppana Bound

An easy lower bound on spectral radius

Let G be a d-regular graph with n vertices, and 𝛼 be its spectral radius. Then 
𝛼 ≥ 𝑑 ⋅

𝑛−𝑑

𝑛−1
.

Proof: Consider Tr 𝐴2 . Counting length-2 walks we have
Tr 𝐴2 ≥ 𝑛𝑑

On the other hand, Tr 𝐴2 = σ𝑖 𝛼𝑖
2 ≤ 𝑑2 + 𝑛 − 1 𝛼2.

Combined, we have 𝛼 ≥ 𝑑 ⋅
𝑛−𝑑

𝑛−1
.

For the Alon-Boppana bound, one may consider Tr 𝐴2𝑘 . 

Trace method/trick



Random walks in expanders

• We knew that it mixes rapidly, in time 𝑂
log 𝑛

1−𝜖
for 𝛼 = 𝜖𝑑.

• Perhaps surprisingly, not just the final vertex is close to the uniform 
distribution, but the entire sequence of walks looks like a sequence of 
independent samples for many applications.

• In fact, expander random walks can fool many test functions:
Expander random walks: a Fourier-analytic approach, by Cohen, Peri and Ta-
Shma



Hitting property of expander walks

Let G be a d-regular graph with n vertices, 𝛼 = 𝜖𝑑 be its spectral radius and 𝐵 be a set of 
size at most 𝛽𝑛. 

Then, starting from a uniformly random vertex, the probability that a t-step random walk 
has never escaped from 𝐵, denoted by 𝑃(𝐵, 𝑡), is at most 𝛽 + 𝜖 𝑡.

Remarks before a proof: 

• Compare this to a sequence of independent samples.

• Expander mixing lemma is like 𝑡 = 2: Note that 𝜑 𝑆 = Pr 𝑋2 ∉ 𝑆 𝑋1 ∼ 𝜋𝑆)

• Bound can be strengthened → see Chapter 4 of Pseudorandomness, by Vadhan

• Applications to error reduction for randomized algorithms
• Instead of using 𝑘𝑡 bits of randomness, only need 𝑘 + 𝑂(𝑡 log 𝑑)
• for one-sided error, escaping the bad set of “random bits”
• for two-sided error, a Chernoff type bound can also be shown → then take the majority of the 

answers

Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵, 𝑋2 ∈ 𝐵,… , 𝑋𝑡 ∈ 𝐵



Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊
𝑡Π𝐵𝑢 1

To see this, notice that Pr 𝑋0 ∈ 𝐵 = Π𝐵𝑢 1
Pr 𝑋0 ∈ 𝐵, 𝑋1 ∈ 𝐵 = Π𝐵𝑊Π𝐵𝑢 1

And so on and so forth.
Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have

Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Then,
Π𝐵𝑊

𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊
𝑡Π𝐵𝑢 2

= 𝑛 Π𝐵𝑊Π𝐵
𝑡𝑢 2

≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2

= 𝛽 + 𝜖 𝑡
Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣
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Π𝐵Π𝐵 = Π𝐵



Hitting property of expander walks

Proof (cont’d):It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

where last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵 , 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

Cauchy-Schwarz inequality:

𝑢, 𝑣 ≤ 𝑢, 𝑢 ⋅ 𝑣, 𝑣
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𝑓,𝑢
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𝑢 = 𝑢,  then 𝑣 ⊥ 1



Hitting property of expander walks

Proof. Observe that 𝑃 𝐵, 𝑡 = Π𝐵𝑊
𝑡Π𝐵𝑢 1

Suppose that we can show ∀𝑓: 𝑓 is a probability distribution, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2. Then,
Π𝐵𝑊

𝑡Π𝐵𝑢 1 ≤ 𝑛 Π𝐵𝑊
𝑡Π𝐵𝑢 2 = 𝑛 Π𝐵𝑊Π𝐵

𝑡𝑢 2 ≤ 𝑛 𝛽 + 𝜖 𝑡 𝑢 2 = 𝛽 + 𝜖 𝑡

It remains to show ∀𝑓: 𝑓 is a probability distribution,
Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2

Without loss of generality, we can assume 𝑓 is supported only on 𝐵.
Π𝐵𝑊Π𝐵𝑓 2 = Π𝐵𝑊𝑓 2 = Π𝐵𝑊(𝑢 + 𝑣) 2 ≤ Π𝐵𝑢 2 + Π𝐵𝑊𝑣 2

Next, Π𝐵𝑊𝑣 2 ≤ 𝑊𝑣 2 ≤ 𝜖 𝑣 2 ≤ 𝜖 𝑓 2.

On the other hand, Π𝐵𝑢 2 =
𝛽

𝑛
≤ 𝛽 𝑓 2,

The last inequality follows from Cauchy-Schwarz:
1 = 𝑓 1 = 1𝐵 , 𝑓 ≤ 𝛽𝑛 𝑓 2

Combined together, we have Π𝐵𝑊Π𝐵𝑓 2 ≤ (𝛽 + 𝜖) 𝑓 2 as desired.

To get a tail bound, consider

𝑃 𝑆, 𝑡 = Π𝑍𝑡𝑊Π𝑍𝑡−1𝑊…Π𝑍1𝑢 1

where 𝑆 = (𝑍𝑡 , 𝑍𝑡−1,…, 𝑍1) 
indicates whether 𝑍𝑖 ∈ {𝐵, ത𝐵}


